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For the example of water vapor, the application of a new method of calculating 
radiant heat transfer, taking account of the line and continuous spectra of 
bodies with multiple reflection and scattering of the energy fluxes, is shown. 

Taking account of the spectra of bodies significantly increases the reliability of prac- 
tical calculations of radiant heat transfer. Solutions for furnaces and occasionally for 
kilns are found by the Hottel zonal method if the surface and suspended phase are gray. Heat 
transfer with the lining and other heated surfaces may be distored here. In [i], the spectra 
of the gas and the surfaces were taken into account by the multiple-reflection method, but 
only for two surfaces. For the case of three surfaces, the calculations are extremely com- 
plicated. Furnaces are sometimes divided into 180-240 zones. The number of different paths 
of the fluxes in multiple reflection and scattering increases to billions or more before the 
fluxes may be neglected. Systematic calculation of all the paths is possible but has yet to 
be realized. 

In fundamental theory, the spectral problem is formally solved on transition to mono- 
chormatic radiation. The spectral absorption coefficients -- Bouguer coefficients -- depend 
only on the local parameters of state of the medium. For the combustion products, hundreds 
of thousands of lines must be calculated and their monochromatic contributions summed. So 
far, calculations have been shown to be practical only for carbon monoxide [2]. The reli- 
ability for triatomic gases is inadequate [3]. In numerical integration of the fluxes over 
the spectrum, the interval must be no greater than 0.005 cm -l. However, the system of heat- 
transfer equations must be solved in each interval, and the volume of calculations is enormous. 

The calculation is simplified when using models of the narrow spectral band. The width 
of the integration interval is increased by more than three orders of magnitude -- to 5-25 
cm -l. The volume of calculations is correspondingly reduced. However, other difficulties 
arise. If the concept of absorption coefficients is introduced, the Bouguer properties are 
lost. According to the Hood model, the coefficient takes the form (m -I) 

(s/d) p/]/1 + (s/d) plz/(4b/d)i 

where s is the sum of broken beam paths from emission to absorption through multiple re- 
flection and scattering at elements of the system of bodies with respect to the real indices. 
The complexity of taking account of the set of such elements was shown in [i] and earlier 

works. 

In 1954, Hottel represented the gas spectrum as a weighted sum of gray components. The 
gray absorption coefficients take on Bouguer properties. They do not depend on the prior 
form of the broken beam path. This is noted here, since the quality of the Hottel coefficients 
is retained in the present method; its complication is justified to the extent that this is 
possible. In practical calculations, the Hottel method has been the basic approach for a 
long time, but it has the following deficiencies: I) the rectangles of the transformed spec- 
trum consist of elements with different coordinates at the axis of the spectrum and therefore 
lose their overall relation to it; it is impossible to take correct account of the spectra of 
the surfaces and the suspended phases; 2) the method includes the Hottel--Nevskii--lvantsov 
approximation, which sometimes gives a large error [4]; 3) the absorptive power of the gas is 
found very approximately, with additional error. Only the first of these deficiencies cannot 
be overcome within the framework of the method, and it is removed in the method of [5], in 
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TABLE i. Fixing the Boundaries of the Bands of the Water- 
Vapor Spectrum at L = 8; in the Band [ii,000; ~], Absorp- 
tion Is Negligibly Small 

Bond number, l 1 2 a i 4 

Boundary, cm -L 50--1150 1150- -1600  1600--2600 I 
I 

26O0--4600 

Bond  n u m b e r ,  l 5 6 7 ], 8 

Boundary, cm- z 4600--6000 6000--8000 8000--9300 9300--11000 

which the spectrum is divided into nine intervals with averaging of the optical constants in 
each. However, within these very broad intervals, the spectra of the bodies are represented 
as gray, which is inapplicable for gases. 

Attempts to resolve the contradictions of the Hottel method were made in [6]. The new 
approach, originally called the Hottel method within a narrow spectral interval, will be 
called the method of a sum of rectangles in the spectral interval (SRSI) here. The interval 
is regarded as arbitrary, in the limit of a small interval, the absorption coefficients 
over all the rectangles are equalized and become monochromatic. The "pure gas" disappears. 
In the limit of a large interval covering the whole spectrum, the method transforms to the 
Hottel method, with all its attendant deficiencies. In [6], the SRSI method was tested for 
the example of the Elsasser model; the error was found to be acceptable for the conditions 
of thermal-engineering problems. However, in view of the narrowness of the intervals, the 
volume of calculations is too large. In addition, other models of the spectral bands must 
be preferred. 

In the present work, after an interval of more than ten years, the SRSI method is again 
considered, for the example of water vapor. 

A new spectral data base for steam is used here [7]. The active part of the spectrum, 
up to ii,000 cm -l, is divided into eight intervals, as shown in Table I. With four rectangles, 
including the zero rectangle for pure gas within each interval, the system of heat-transfer 
equations must be solved 33 times, which is not beyond the capacity of computers. The emis- 
sivity is summed over L = 8 intervals 

N l 

s =  gtsz, g z - -  aTa 

N l NI  

ez = ~ Io,(T)s,(r;x)/ ~ Io,(T), 
1=1 7=I 

[ ]/1 -}-(s/d)X(/a) /(~o/a) 1 s3 = 1 - -  exp "s-~x"'"-" " 

The emissivity in the &-th interval ~s on the basis of the spectral data base is taken 
as the accurate value. The approximate value according to the SRSI method is 

ez = ~ c l m [ 1 -  exp(--Kzmx)], cz.~= ~ bzm~T ~'-'. 
m = l  s  

The choice of Ks and b&m X is based on minimization of the difference between s& and r163 
minimum of the target function with linear constraints is found by the Davidson--Fletcher-- 
Powell method [8] 

Z V ~o 
q~----- ~ ~](l--;~z/e~z) z, O ~ b a T  ~-'~I,  K,m>O, 

z = l  v = l  ~ - 1  

( i )  

The 
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TABLE 2. Mean Square Error of as %, Calculated from Eq. (4) 
with SRSI Parameters M = 3, ~0 = 4 (Normal Total Pressure; 
Vapor Infinitely Diluted with Nitrogen) 

~, em'atm 

3 
30 
50 

I00 
300 

4,15 
3, 87 
4,15 
4,64 
5,42 

2,01 
1,99 
1 ,c9 
1,98 
1,99 

Bond number 

3 4 

3,05 1,90 
3,63 I ,55 
2,55 ] ,53 
2,60 ,60 
3,38 1,94 

5 6 

1,93 3,55 
i ,9i 2,65 
1,90 2,48 
1,89 2,35 
1,89 2,56 

3,44 
3,44 
3,44 
3,44 
3,43 

Total spectrum 
- -  ~spect as a sin- 

I gle band ~o=s~ for 

22,07 
II ,95 
11,10 
12,00 
16,68 

1,75 
1,54 
t ,51 
1,49 
1,54 

where v and z are the temperature and optical-thickness indices; V and Z are their total 
numbers in the set of arguments. The values of ~vz and ~vz are calculated for optical thick- 
nesses of 0.i, 0.3, 0.5, i, 3, 5, i0, 30, 50, i00, 300, 500, i000 cm'atm and temperatures of 
600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, and 3000 K. The con- 
straints on this set of values of evz and gvz correspond to the result of [8], where insignif- 
icant increase in accuracy of the calculations was found with expansion of the smaple, involv- 
ing considerable increase in machine time. Interpolation of the parameters of the narrow- 
band model with respect to the temperature is by the cubic-spline method with the calculation 
of the second derivative at the boundaries of the interpolational interval by the finite-dif- 
ference formula using a four-point template, except for the bands from 9300 to 11,000 cm -l, 
for which a three-point template is used. 

The search for a local minimum of the target function with respect to the specified 
direction is by the quadratic-approximation method [9]. In the SRSE method, tables of co- 
efficients Ks and bs k are obtained for each spectral interval s there is multiple increase 
in the mass of these coefficients. Their direct use is recommended in the Hottel method, but 
this is almost meaningless in the present case. The calculation is based on the spectral data 
base. Accordingly, the tables of coefficients are omitted. 

For heat-transfer calculations, a formula more general than Eq. (i) for the absorptive 
power of the gas in the case of an incident flux with a black spectrum a 0 is required. In 
contrast to e, b 0 depends on three variables ~- the depth x, surface temperature To, and the 

gas temperature ~ averaged over the depth x - and is not meaningless for an arbitrary temper- 
ature field. According to [i0], a0 is used for calculations of the intrinsic radiation of 

the gas volume at its boundary. In [i0, ii], the simplest averaging was used: T=fTdv; u=x'/x. 
0 

In the present method, the values obtained with respect to the new spectral data base are 
used as the standard of comparison 

L Nl NI 

ao--= .~gz(To)az(To; T; x), az= EI~176 x ) / . ~  loj(To). 
1=1 /=I , /=! 

The approximate values according to the SRSI method are 

L .,14 
[% = ~.~gz(To)~t, ~z =: .~c~(To; 'F)[l--exp(--Kzmx)]. (2) 

l=! m=l 

The a b s o r p t i o n  c o e f f i c i e n t s  KEm a r e  t a k e n  as in  Eq. (1 )  f o r  t h e  e m i s s i v i t y .  Then, when 

a0 = a0, the weights C~m(T0; T) are unknown. The previous dependence cu~= )q bl~xT a-I may be 
s 

e x t e n d e d ,  add ing  t h e  new p o l y n o m i a l s  bs 0) and f i n d i n g  t h e  c o e f f i c i e n t s  o f  t h e  d o u b l e  
polynomial. However, a more accurate but also more complex method using the spectral data 
base is p r e f e r a b l e .  
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The following approximate expression is obtained from the identity as = (as163163 

where gs were defined in Eq. (i), and ~s are calculated "accurately" 

N~ N l 

6z= i=i i=I 
N, N, ] (3) 

In the program bundle employed, the spectral data base from [7], interpolation of these 
data with respect to the temperature on the basis of spline functions [12], and calculations 
of the coefficients Ks and bs % in Eq. (I) may be noted. The calculation of 6s from Eq. (3) 
requires a special program; the first two are adequate. 

In Eq. (3), ~ is some mean in the interval of x chosen on formulating the problem in the 
SRSI method. The averaging is necessary to eliminate the dependence of the weights C~m on x. 

Table 2 gives the mean square error of a~ for the first seven spectral intervals in Table I 

o~= ~ (I--5,/~,)~/(N,N~A~o). (4) 

The value of o is expressed in percent. Here N i is the number of discrete values of the argu- 
ments for which as and a~ are calculated in the complete set of versions: x = 3, i0, 30, i00, 
300 cm.atm; T = I000, 1500, 2000, 2500, and To = i000, 1500, 2000, 2500 K. Thus, N x = 5, 
N~ = NT0 = 4. In the penultimate column, the whole spectrum is considered as a single band; 

the corresponding error is large. In the last column, the result for the whole spectrum is 
summed over particular values of as The error is less than for any particular interval, on 
account of partial compensation. The choice of ~ = 50 cm'atm for Eq. (3) is confirmed by 
Table 2, which is the principal evaluation of the SRSI method in recommending its practical 
use. 

Repetition of the investigation with increase in the parameters -- M: 3 § 5; X0:4 + 6 - 
does not yield significant reduction in the error, which is already very low and cannot be 
reduced to zero at such M and %o- 

The system of heat-transfer equations is given as an illustration of the SRSI method, 
since it may be written in specific form. In [II], the heat-transfer problem in a plane 
layer with gray bodies was solved. The system of equations in [ii] is taken as the starting 
point here. Its conversion for the SRSI method is simple. 

The integral for the flux density of any form q=fq~,~da~ is approximated by the sum 
0 

L 7~f~ 1 

l = l  t n ~ l  

The subscript s is omitted below, but the discussion is only for qs The density of the 
resulting flux for the m-th gray gas in the s spectral interval is equal to the difference 
of the forward and backward values 

q~q=q+- -q - ,  

where at a depth ~k 

6 
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TABLE 3. Error of the Mean Planck Absorption Coefficient 
= ac - ac, (cm'atm) -I, According to Eq. (5) for Water 

Vapor a t  Normal Pressure in a Mixture with Nitrogen at In- 
finite Dilution (doefficients eEm and KEm dhosen on Segments 
x = 0.1-300 cm'atm; T = 1000-2600 K, for L = 8 (see Table 1); 
M, l 0, Numbers of Gray Gases and Terms in Polynomial) 

2 : , K  

1073 
1573 
2 0 7 3  
2573 

cr~ �9 atl~- 1 

4,866 
2,132 
1,097 
0, 636 

When M is 

3 3 4 I ~ S 

when h 0 Ls 

4 5 5 5 ~i 

0,443 
~0,069 

0,003 
--0,009 

0,397 
--0,024 
--0,008 

0 

0,240 
--0,033 
--0,003 

O, 004 

0,187 
--0,030 

0 
I), 003 

O, 184 
--0,029 

O, 001 
D, 003 

q- (~k) -~ qe~W~ (~o - -  ~ )  + ~ 17 (~)w~ (~ ~ t~) dr, 

x -- (pK + a V + 6V)s is the optical thickness with respect to the total attenuation coefficient; 
K - KZm; w n = 2En; E n is an integral exponential. 

The effective flux densities qel and qe2 at the surfaces bounding the layer and the source 
function B(x) are determined from three integral equations 

b~ + bed1 b2 4- bid,_ 
qet - -  , qe~ = , 

1 - -  d i d 2  1 - -  d i d o .  

where 

bl ( ~ - -  o 4 [.B 

0 

be = (1 -- Re) g2c ~ 0~ -I-" R2 1 B (~) ~z (% -- t) d~, 

and 

B(t )  = ( 1 -  Q)g( t ) c ( t )O~ -t- ~O~; gi = oT----~. Z loJ (T,); 
]=1  

The dimensionless radiant temperature 0., is calculated from the integral equation 

To 

40~ = qelW~ (~) + ~.,~., (~o - -  *) + 5 B (t') a,1 It - -  t ' l  d*'. 
0 

This system of integral equations is solved L(M + I) + i times. The last time corres- 
ponds to the tail interval [11,000; -], cm -I, beyond the limits of the active spectrum of 
water vapor. On taking account of the scattering anisotropy, the number of integral equa- 
tions coupled in a single system rises [13], to an extent that increases with the complexity 
of the scattering index. The optical constants of the surfaces and suspended phases are 
averaged in each of the nine spectral intervals. 

In the expressions fQr bi(~0), the product gs163 , whs is the intrinsic radiation of 
an element of volume of the m-th gray gas, is isolated from the factor B(~)dT in the integrand. 
On summation over all the rectangles, the radiation coefficient in the total spectrum (the mean 
Planck absorption coefficient) is obtained. The "accurate" ahd approximate values take the form 

7~8 



where 

g L 

l~ l  1~1 

N l Nl Af 

]=1 j = l  rn=l 

(5) 

It is desirable to verify the products cs163 because Ks and bs I are determined on a 
finite segment of optical thicknesses [Xmin; Xmax], where Xmi n > 0, whereas ~cs is extrap- 
olated for x + 0~ The results in the total spectrum are shown in Table 3. It is evident 
that, with increase in M and I0, the error is reduced, but the economy of the calculations 
is also reduced with increase in M. Expansion of the segments of x and T is not considered 
here; it leads, as a rule, to large errors. The error also increases rapidly beyond the 
limits of the segments of x and T. The same calculations are undertaken in all eight spec- 
tral intervals for &cZ" The relative error of these particular values is often higher than 
in Table 3, since the summation over the spectral intervals is accompanied by some compen- 
sation of the errors. 

In future work, the SRSI method will be compared with others in solving heat-transfer 
problems. 

NOTATION 

ao, absorptive power of gas for incident flux with black spectrum a~ temperature To, 
dimensionless; Cm, weight of gray gas, dimensionless; b, halfwidth of line, cm-1; bml , co- 
efficient of polynomial for Cm; d, mean distance between lines, cm-1; gs energetic fraction 
of s spectral interval, dimensionless; p, partial gas pressure, atm; q, heat flux density, 
W/m2; s, integral intensity of line, cm-Z/m.atm; x = ps optical depth, m'atm; B, source func- 
tion, dimensionless; En, integral exponential; I0j, Planck function in j-th spectral interval, 
cm'W/m2"sr; Km, absorption coefficient of m-th gray gas, (m'atm)-~; R, reflective power; T, 
temperature, K; ~V, absorption coefficient of suspended phase, m-l; SV, scattering coefficient, 
m-Z; E, emissivity of gas; ~, optical thickness with respect to attenuation coefficient, di- 
mensionless; m, wave number, cm-1; ~, albedo of elementary volume, dimensionless. Subscripts: 
0, surface, standard value; j, number of elementary spectral interval; m, gray gas (M, total 
number of such gases); 8 = T/T~; w n ~ 2En; q ~ q/~T~. 
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